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Abstract 

In addition to symmetry rotations (27 = 1), lattices may 
admit coincidence-site-lattice (c.s.1.) rotations of 
various degrees of coincidence, 27. The conditions for 
the occurrence of c.s.1, rotations are formulated in 
general terms by introducing the metric matrix of a 
lattice. When all lattices are considered, it is found that 
there are 427 possible values for the angle of rotation 
which give rise to a degree of coincidence 27. These 
angles have cosines which are integral multiples of 
1/227. A particular lattice admits only some of these 
c.s.l, rotations. Cubic lattices are discussed in detail and 
it is shown tha t  the number of permissible rotation 
angles for each odd value of 27is approximately 3.414 x 
x/Z'. Conversely, a particular rotation angle originates a 
c.s.1, of degree of coincidence 27 in those lattices which 
satisfy particular metric conditions. Finally, the effect 
of a uniform strain due to temperature or pressure 
changes is analysed, and it is shown that while 
symmetry rotations are invariant to this form of strain, 
only very few c.s.1, rotations are unaffected. 

1. Introduction 

The symmetry rotations of a space lattice bring it into 
self-coincidence. These rotations involve one of the 
angles 60, 90, 120, 180 ° , and it is usual to classify the 
space lattices in various systems according to the 
rotational symmetry they possess. It is convenient to 
think of two interpenetrating lattices, identical to the 
lattice under consideration, which are initially in the 
same orientation and therefore show total coincidence 
of their lattice points. If one of the lattices is now given 
a symmetry rotation, total coincidence of lattice points 
will again occur. In addition to self-coincidence 
rotations, space lattices may admit partial-coincidence 
rotations. Upon such a rotation, a fraction 1/27 of the 
lattice points in each of the two interpenetrating lattices 
comes into coincidence with lattice points of the other 
lattice. The coincident points define a space lattice - the 
coincidence-site lattice (c.s.l.). The e.s.1, is a sub-lattice 
of the original lattice, and 27 is the ratio of the volumes 
of unit cells in the c.s.l, and in the original lattice. The 
degree of coincidence 27 is therefore an integer. The 
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c.s.1, orientations for each 27 are likely to occur for a 
discrete and finite set of rotation angles, in the same 
way as the symmetry rotations can only occur for one 
of the four angles indicated above. The main objective 
of this paper is to derive the permissible angles 0 i for 
each value of 27 and to formulate the conditions that a 
lattice must satisfy in order to admit a particular c.s.l. 
rotation (27,0t). 

Matrix algebra has proved a very convenient method 
of studying the properties of coincidence-site and 
related lattices (Warrington & Bufalini, 1971; Fortes, 
1972a, 1977; Grimmer, Bol~,ann & Warrington, 
1974; Grimmer, 1976). In the present paper we shall 
extend previous work along this line and show how the 
c.s.1, theory can be simply formulated in terms of the 
metric matrix of a lattice. It is within this formulation 
that we shall solve the problems enunciated above. The 
advantages of using the metric matrices in the study of 
c.s.l.'s of two different lattices will be discussed else- 
where. 

Attention will also be given in this paper to the effect 
of strain on the symmetry and c.s.1, rotations of a 
lattice. When a lattice is strained, its metric is changed; 
if the strain is due to temperature or pressure changes, 
symmetry rotations are unaffected, but, except in cubic 
lattices, only c.s.1, rotations about high-symmetry axes 
will be preserved. 

2. C.s.l. rotation matrices 

We take a vector basis (e I e 2 e3) of a lattice and intro- 
duce the metric matrix G = [(gl)] with gij = ei. ej. The 
set of vectors [~1 e2 e3] = [e~ e2 e3] T, meaning that et = 
Y j tj ie j, with T = [(te)] , constitutes another basis for 
the same lattice if T is an integral matrix with a deter- 
minant equal to + 1 (in which case T -~ is also an 
integral matrix). The metric matrix in the new basis is t] 
= T r GT, where T r is the transpose of T. 

A rotation of a space lattice with a basis (e 1 e 2 %) is 
defined by a matrix R (expressed in that basis) which 
satisfies the condition (e.g. Korn & Korn, 1968) 

R r GR = G. (1) 

If the basis is changed (matrix T) the same rotation is 
represented by T -1 RT. A matrix R satisfying equation 
(1) defines a c.s.1, rotation if and only if R is rational. 
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This result has been widely used in the study of cubic 
and hexagonal lattices (e.g. Grimmer et al., 1974; 
Warrington, 1976). Recently, Grimmer (1976) has 
given a formal proof of its general applicability and has 
also shown that the degree of coincidence is the 
smallest integer 27 such that both 27R and 27R -1 are 
integral matrices. These properties are, of course, inde- 
pendent of the vector basis chosen. 

For a given lattice (given G) the c.s.1, rotations are 
then defined by rational matrices R which satisfy con- 
dition (1). In addition to 27, it is important to deter- 
mine, for each R, the axis and the angle of rotation. The 
axis V = ~-~..]~)j ej is obtained from Rv = v; in this 
matricial equation v is the column vector [(v j)]. The 
vector v always defines a lattice direction, i.e. v is 
parallel to a lattice vector (Fortes, 1972b). The angle of 
rotation can be obtained from 

t = 2 c o s 0 +  1, (2) 

where t is the trace of R (i.e. the sum of the elements in 
the diagonal of R). In the following, we shall attach 
special importance to 27 and 0, and refer to a c.s.1. 
rotation by indicating its pair (27,/9), as is usually done 
for symmetry rotations. It should be noted that for a 
particular pair (27,0), a lattice may admit two (and 
possibly more than two) c.s.1, rotations not symmetri- 
cally related (an example is given by Grimmer et al., 
1974), and that two or more different pairs (27,0) may 
be associated with identical c.s.l.'s of a particular 
lattice. These complications do not affect the following 
analysis which has the purpose of finding the set of 
permissible pairs (27,0) for c.s.1, rotations of an 
arbitrary lattice. 

We have omitted the value k = 327 which corres- 
ponds to 0 = 0. With k - 27 = i, equation (4) can be 
written as 

i 
COS / 9 i -  

227 
with i - - - -227, . . . ,  0 , . . . ,  227-- 1. (5) 

The previous argument is analogous to that used by 
Bhagavantan (1966) to find the possible angles of 
symmetry rotations of a space lattice. The argument 
can be generalized to n-dimensional lattices (the trace 
of a rotation matrix of rank n is 2 cos/9 + n - 2) with 
the result that the possible angles for c.s.1, rotations are 
still given by equation (5). No more symmetry or c.s.1. 
rotation angles appear in higher-dimension lattices. 

It is now necessary to show that there is at least a 
lattice for which a rotation of any of the angles 8~ given 
by equation (5) originates partial coincidence of degree 
27. We shall prove this for the case of three-dimensional 
lattices. Consider a lattice with a basis (el e2 e3) such 
that l e21 = 271ell and the angle between e~ and e 2 is 
equal to/gt, with cos/9~ given by equation (5); e 3 is per- 
pendicular to both e~ and e2. We have 

~e~ 

G =  " ~: ~ 27~e~ 

0 e 

A rotation of angle /9i about e3 is expressed by the 
matrix [eft equations (1) and (2)] 

3. Rotation angles for partial coincidence 

We now consider the rational matrices of the type R = 
(1/27) [(n~k)], where ntk are integers (i, k = 1, 2, 3), and 
27 is the smallest integer such that both 27R and 271:1-1 
are integral matrices. As mentioned above, c.s.1. 
rotations are expressed by matrices of this type, the 
degree of coincidence being the integer 27. The angle of 
rotation is given by [eft equation (2)] 

1 + 2 c o s / 9 = - - 1  ~ ,F, nu" (3) 

t 

The first term can only vary between - 1 and 3. There- 
fore, the integer ~ n ,  may vary between -27 and 327. If 
Y t nu can take all the integral values between these 
limits, then the possible angles for c.s.1, rotations of 
degree of coincidence 27 will be given by 

k--27 
COS Ok = 

227 

with k = --27, -27 + 1, . .- ,  0 , . - . ,  327 - 1. (4) 

R = i lZ  

0 

The degree of coincidence is therefore 2; for all values 
of i (27R -1 is also an integral matrix). We see that for 
each of the rotation angles given by equation (5) there 
are lattices which achieve partial coincidence of degree 
27. And there are no more c.s.1, rotations for each 27 
than those given by equation (5). 

To summarize the results obtained so far in this 
section, we may conclude that partial coincidence of a 
given degree 27 can only be achieved for particular 
angles of rotation (in number 427) of a lattice. The 
possible angles are given by equation (5); their cosines 
are the integral multiples of 1/227. Of course, an 
arbitrary lattice will admit only some of these c.s.1. 
rotations and frequently none. These results can be 
regarded as a generalization of the well known 
properties of symmetry rotations of lattices to include 
c.s.l, rotations. 
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Table 1. Angles of  rotation (o) for partial coincidence 
(c.s.l.) 

Degree of  coincidence 

X = I  X = 2  X = 3  

33.56 
41.41 

48-19 
60.00 60-00 60.00 

70.53 
75-52 

90.00 

104-48 

120-00 

138.59 

180.00 (c) 180.00 

* Angles of rotation in a cubic 

90.00 (c)* 

120.00 (c) 

80.41 
90.00 
99.59 

(c) 
(c) 

109-47 (c) 
120.00 (c) 
131.81 (c) 

146.44 (c) 
180-00 (c) 

lattice. 

The rotations of 180, 120, 90 and 60 ° are among the 
possible c.s.l, rotations for all values of 27. In Table 1 we 
give the values of the angles of rotation for c.s.l.'s with 
27 = 1, 2, 3 (the values for partial coincidence in a cubic 
lattice are indicated; el. Warrington & Bufalini, 1971). 
We note that if 0 i is a possible angle, (180 °-0i)  is also 
possible, though not necessarily in the same lattice. 

4. Permissible angles for c.s.I, rotations of a particular 
lattice 

In a recent publication (Fortes, 1977) it has been 
shown that lattices can be classified into various cat- 
egories, depending on the incidence of c.s.l, rotations 
they admit. The important category is what are termed 
C lattices, i.e. lattices which admit c.s.l, rotations about 
any lattice direction. As shown by Fortes (1977), the C 
lattices are characterized by a metric G of the type G = 
210, where 2 is a number (which can be taken equal to 1 
by choosing a convenient unit to measure the lattice 
parameters) and I 0 is an integral matrix. Next to C 
lattices there are lattices which admit c.s.l, rotations 
(with 0 4 :180  °) about one and only one direction, and 
lattices which admit only 180 ° c.s.1, rotations. Finally 
there are lattices which do not admit any c.s.1. 
rotations. The matrices G for each of these three types 
must conform to certain conditions, which we shall 
indicate in § 5. 

We note that any lattice can be approximated by a C 
lattice as closely as desired, in the same way that a real 
number can be approximated by a rational number as 
closely as desired; therefore, any lattice can be treated, 
with an accuracy as large as desired, as a C lattice. 

In order to find if a particular lattice admits a c.s.1. 
rotation defined by a given pair (27,0l) , related by 

equation (5), it is necessary to find whether a rational 
matrix FI exists, satisfying equation (1), with a trace t = 
2 cos 0~ + 1, and such that  27 is the smallest integer for 
which both XR and 271:1 -I  are integral matrices. 

This problem can be solved by first writing the 
general form of FI in a particular lattice basis, and then, 
by inspection, finding the pairs (27,0l) for which both 
271:1 and 27R -1 are integral matrices. The general form 
of R is of the type T -~ FIe T where FI e is an orthogonal 
matrix (Le. a 0~ rotation matrix in an orthonormal 
basis, the form of which is well known) and T is the 
matrix that  relates a vector basis of the lattice to the 
orthonormal basis (this is not, in general, a lattice 
basis, and therefore T is not an integral matrix). 

A particularly important  case is that of cubic lattices, 
for which the problem can be completely solved by 
making use of  the well known relations between the 
angle of rotation and the degree of coincidence 
(Ranganathan,  1966; Grimmer et al., 1974). The 
permissible angles 0 l for c.s.l, rotations of a cubic lattice 
are those for which 

X 
tg 0 / 2  = - - R ,  (6) 

Y 
2 where x and y are coprime integers and R 2 = y J n j, nj 

being coprime integers (the Miller indices of  the 
rotation axes). Writing 

C = x 2 + y 2 R 2 ,  (7) 

the degree of coincidence is the odd integer among C, 
C/2 and C/4. 

Let us now find the number of permissible angles 0 t 
for each (odd) value of 27. Since cos 0 i = i/227 we have 

0 i (427 2 -  i2) 1/2 
tg - -  = (8) 

2 227+ i 

Writing 227 + i = p2/Q, where 1/Q is an integer 
without a square factor, and inserting this in equation 
(8) we obtain [from the rule defined in equations (6) 
and (7)], after eliminating the factor p, a value C'  = 
427/Q. This C '  may  differ from the correct C by a 
square factor n 2, if n 2 divides both p2/Q2 and ( 2 2 7 -  
i)]Q, i.e. 427/Q = n 2 a27 ( a  = 1, 2, 4). If the 0 i rotation 
of a cubic lattice is to give rise to a degree of coinci- 
dence 27, it is then necessary that Q = 1 or Q = ½, which 
are the only solutions of the previous equation. It 
follows that the possible angles for a particular odd 
value of 27 are those for which i satisfies the condition 

227 + i = p2 o r  2q  2 (--227 < i < 227), (9) 

p and q being integers (we take p > 1 and q > 0). In 
addition, it is necessary that (1/Q)(227 - i) be different 
from a u number, i.e. an integral number which cannot 
be written as the sum of three squares. The u numbers 
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(7, 15, 23, 28, 31,•..) are all one of the types 8n -- 1 
or 4m (n, m are positive integers). It is then easy to 
see that the condition (1/Q)(227 - i) 4: u number 
is always satisfied for 227 + i = 2q 2, but not for 227 + 
i = p2. For a given 27 the number, b, of these for- 
bidden cases is the number of ways in which 27 can be 
written as the sum of a square (1, 4, 9 . . . .  ) plus a u 
number. The incidence of these special cases is small: b 
is at most one for 27 < 43, at most two for 27 < 107, etc. 

The number of permissible values of i for each 27 is 
easily found [see equation (9)]: 

427 -- 1 )1/2 
1(427-  1) 1/2 + 1 + 1 -- b, (10) 

2 

where I (x)  is the largest integer not greater than x. 
This sum is approximately 

[(') ] I 1 +2--- ~- (427) m - b ,  (11) 

and since b is small compared with the other term, we 
may conclude that the number of different rotation 
angles of a cubic lattice giving rise to a c.s.l, of degree 
of coincidence 27 (27 odd) is approximately the closest 
integer to 3.41427 1/2 . This figure should be compared 
with that, 427, valid for the totality of lattices. 

5. The occurrence of  a particular c.s.l, rotation 

The inverse problem to that discussed in the previous 
section is to determine the lattices (or, equivalently, the 
metric matrices G) which admit a c.s.1, rotation defined 
by a particular pair (27,0) related by equation (5). This 
problem can be formally solved by imposing the same 
conditions on the rotation matrix. Before delineating a 
detailed solution, we note that multiplication of the 
basic vectors by the same real number # (so that G is 
multiplied by #2) does not affect the c.s.1, rotations; and 
if a c.s.1, rotation (27,0~) exists in a lattice, it also exists 

reciprocal relationship admit the same c.s.1, rotations 
and, in particular, have the same symmetry• 

Let us now show how it is possible to find the metric 
of the lattices which admit a particular [27,8 = 
cos -1 (i/227)] c.s.1, rotation. In all such lattices the axis 
for this rotation is necessarily parallel to a lattice vector 
e l, which is perpendicular to a lattice plane H (Fortes, 
1972b). One can always take a vector basis (e 1 e 2 e3) of 
these lattices with one of the vectors (el) parallel to the 
rotation axis, and another (ez) in the lattice plane H and 
therefore normal to e v To simplify we make levi = 1. 
Consider now a set of orthonormal vectors (el e2 Ca) 
with el = el and e 2 parallel to e 2. The matrix C in 
[¢1 ¢2 e3] = [el e2 ea]C can be written in the form: 

(: ° C =  1/2 k 2 . 

0 k 

The metric matrix of the lattice, referred to the basis 
(e 1 e 2 e3), is G -- (CO/')  -1. The lattice is now rotated by 
0 about e r The rotation matrix is (0 

R c = cos 0 --sin 

sin 0 cos O] 

in the orthonormal basis, and R = CR c C -1 in the lattice 
basis. 

Writing a j  = 2k s sin 0 ( j  = 1, 2, 3) and cos 0 =//227 
we obtain for the matrices 27R and 27R -~ the expression 

27 ___a~27 aa27 _ l + ~ ¥ a  z 
a 3 227 

) ZR___l i ( a227 427 2 - i21 

o / + 27a 3 T 27a2 + - 
2 '  

and for the metric matrix 

1 0 al 
a3 

G = 0 2 2 a2 ,~,2 

a3 

a, (°,/' 
as as \ as ] 

a 2 )  

a3 

2 2 [ 427 2 -- i2 

a 2 427 2 

(13) 

in the reciprocal lattice (metric matrix G-l), the 
rotation matrix being (R-l) r in the reciprocal basis. 
This last property shows that two lattices in a 

When 0 = 180 ° (i = --227) these expressions still apply 
if we make a i = 0, (4272 - i2)/a3 = 0, and assume that 
al/a 3, a2/a 3 remain finite. 
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The lattices that admit the particular c.s.1, rotation 
[27,/9 = cos-1(i/227)] are those defined by metric 
matrices of the type ~2 13, where/t  is any real number, 
and 13 is given by equation (13), and where 2 is another 
real number and al, a 2, a 3 are numbers such that the 
elements in the matrices 271:1 +-1 [equation (12)] are 
integers without a common divisor. 

For/9 ~ 180 °, the numbers a 1, a 2, a 3 are necessarily 
rational. Finding the ai's is, in general, a somewhat 
tricky problem in the field of integral numbers. In this 
case, if 22 is also rational the lattices defined by 13 are C 
lattices; if 22 is not rational the lattices admit only c.s.1. 
rotations (with /9 :/: 180 °) about el. Finally, a 180 ° 
c.s.l, rotation of degree of coincidence 27 occurs pro- 
vided aJa 3 is a rational number such that 227(at/a 3) is 
an integer coprime with 27. The metric matrix 13 is then 
of the form 

I _  0 --al/a 1 13= ~ ~2 ~ , (14) 

al/a 3 q7 ~2 

where 2, ~0, ~, are any real numbers (with the only 
restriction that (3 is a metric matcix). 

In all cases the basis (e 1 e 2 e3) can be transformed by 
an integral matrix T (with det T = + 1) into a more con- 
venient basis (13 is transformed into T r 13T) - for 
example, one that shows the Bravais type of lattice. For 
example, if the matrix (3 [equations (13)or (14)] can be 
transformed into a unit matrix, the lattice defined by (3 
is a simple cubic lattice. 

6. Effect of strain on c.s.I, rotations 

When a lattice is uniformly strained its vector basis is 
altered. We introduce the matrix S = [(s~j)] which 
relates crystallographically equivalent bases in the 
unstrained and strained lattices. More precisely, S is 
chosen such that, for small strains, s~j ~ 1 and sij ___ 0. 
Since the metric is changed, symmetry and c.s.l. 
rotations will, in general, be affected. Consider two 
identical interpenetrating lattices in a c.s.l, orientation. 
In general, the strain will affect the two lattices 
differently and in the strained 'bicrystal' the two lattices 
are no longer identical. This is the relevant situation in 
the case of elastically anisotropic crystals deformed by 
a uniform stress. Its analysis, from the point of  view of 
the c.s.l, relations, can be made using Grimmer's (1976) 
method for the study of c.s.l.'s between different 
lattices. 

We shall consider only the strain due to a scalar 
stimulus (e.g. temperature and pressure changes). In 
such cases, the two strained lattices are still identical. If 

• their relative orientation in the unstrained condition is 
defined by a rotation matrix 8 (axis of misorientation v, 
angle of rotation/9), then the relative orientation in the 
strained condition is defined by S-i  BS, and while/9 is 

unchanged, the new axis of rotation, Sv, will not in 
general be crystallographically equivalent to the 
original axis. The matrix S can be obtained from the 
thermal expansion or elastic properties of the crystal, 
depending on the strain stimulus [see, for instance, 
Bhagavantan (1966)]. For example, in orthorhombic 
crystals the matrix S relating vector bases parallel to 
the orthorhombic axes is a diagonal matrix, no two 
diagonal elements being equal. 

Suppose that I:1 is a rational matrix which defines a 
c.s.1, rotation of the unstrained lattice. Then S -1 IqS will 
not, in general, be rational and therefore does not define 
a c.s.1, rotation. There are, however, some important 
exceptions to this situation, which can be found from a 
consideration of the form of S in the various symmetry 
systems. The invariant cases, i.e.c.s.1, orientations 
which are not destroyed by thermal or hydrostatic 
pressure strains, are the following: (1) all symmetry 
rotations; (2) all c.s.1, rotations in cubic lattices; (3) all 
c.s.l, rotations about threefold (i.e. trigonal), fourfold 
(i.e. tetragonal) and sixfold (i.e. hexagonal) axes of 
symmetry. 

It should be noted that even 180 ° c.s.l, rotations are, 
in general, affected, although coincidence in the lattice 
plane perpendicular to the rotation axis (i.e. the twin 
plane) is not destroyed. 

Finally, we would like to draw attention to the 
possibility that these effects of strain (particularly 
stress-induced strain) in the distribution of atomic sites 
at a grain boundary may give rise to significant (and 
possibly irreversible) changes in the boundary atomic 
structure, especially in the case of c.s.1, or near c.s.1. 
boundaries. It should be interesting to analyse the 
possibility of these changes being accomplished by the 
emission or absorption of point or line defects at the 
boundary. 

Helpful discussions with Dr H. Grimmer, Dr D. A. 
Smith and Professor Campos Ferreira are acknow- 
ledged. 
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